Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Total-body photography (TBP) has the potential to revolutionize early detection of skin cancers by monitoring minute changes in lesions over time. However, there is no standardized Digital Imaging and Communications in Medicine (DICOM) format for TBP. In order to accommodate various TBP data types and sophisticated data preprocessing pipelines, we propose three TBP Extended Information Object Definitions (IODs) for 2D regional images, dermoscopy images, and 3D surface meshes. We introduce a comprehensive pipeline integrating advanced image processing techniques, including 3D DICOM representation, super-resolution enhancement, and style transfer for dermoscopic-like visualization. Our framework tracks individual lesions across multiple TBP scans from different imaging systems and provides cloud-based storage with a customized DICOM viewer. To demonstrate the effectiveness of our approach, we validate our framework using TBP datasets from multiple imaging systems. Our framework and proposed IODs enhance TBP interoperability and clinical utility in dermatological practice, potentially improving early skin cancer detection.more » « less
-
Travel-time computation with large transportation networks is often computationally intensive for two main reasons: 1) large computer memory is required to handle large networks; and 2) calculating shortest-distance paths over large networks is computing intensive. Therefore, previous research tends to limit their spatial extent to reduce computational intensity or resolve computational intensity with advanced cyberinfrastructure. In this context, this article describes a new Spatial Partitioning Algorithm for Scalable Travel-time Computation (SPASTC) that is designed based on spatial domain decomposition with computer memory limit explicitly considered. SPASTC preserves spatial relationships required for travel-time computation and respects a user-specified memory limit, which allows efficient and large-scale travel-time computation within the given memory limit. We demonstrate SPASTC by computing spatial accessibility to hospital beds across the conterminous United States. Our case study shows that SPASTC achieves significant efficiency and scalability making the travel-time computation tens of times faster.more » « less
-
Abstract We provide data on daily social contact intensity of clusters of people at different types of Points of Interest (POI) by zip code in Florida and California. This data is obtained by aggregating fine-scaled details of interactions of people at the spatial resolution of 10 m, which is then normalized as a social contact index. We also provide the distribution of cluster sizes and average time spent in a cluster by POI type. This data will help researchers perform fine-scaled, privacy-preserving analysis of human interaction patterns to understand the drivers of the COVID-19 epidemic spread and mitigation. Current mobility datasets either provide coarse-level metrics of social distancing, such as radius of gyration at the county or province level, or traffic at a finer scale, neither of which is a direct measure of contacts between people. We use anonymized, de-identified, and privacy-enhanced location-based services (LBS) data from opted-in cell phone apps, suitably reweighted to correct for geographic heterogeneities, and identify clusters of people at non-sensitive public areas to estimate fine-scaled contacts.more » « less
-
Kelso, Janet (Ed.)Abstract MotivationDriven by technological advances, the throughput and cost of mass spectrometry (MS) proteomics experiments have improved by orders of magnitude in recent decades. Spectral library searching is a common approach to annotating experimental mass spectra by matching them against large libraries of reference spectra corresponding to known peptides. An important disadvantage, however, is that only peptides included in the spectral library can be found, whereas novel peptides, such as those with unexpected post-translational modifications (PTMs), will remain unknown. Open modification searching (OMS) is an increasingly popular approach to annotate modified peptides based on partial matches against their unmodified counterparts. Unfortunately, this leads to very large search spaces and excessive runtimes, which is especially problematic considering the continuously increasing sizes of MS proteomics datasets. ResultsWe propose an OMS algorithm, called HOMS-TC, that fully exploits parallelism in the entire pipeline of spectral library searching. We designed a new highly parallel encoding method based on the principle of hyperdimensional computing to encode mass spectral data to hypervectors while minimizing information loss. This process can be easily parallelized since each dimension is calculated independently. HOMS-TC processes two stages of existing cascade search in parallel and selects the most similar spectra while considering PTMs. We accelerate HOMS-TC on NVIDIA’s tensor core units, which is emerging and readily available in the recent graphics processing unit (GPU). Our evaluation shows that HOMS-TC is 31× faster on average than alternative search engines and provides comparable accuracy to competing search tools. Availability and implementationHOMS-TC is freely available under the Apache 2.0 license as an open-source software project at https://github.com/tycheyoung/homs-tc.more » « less
An official website of the United States government

Full Text Available